Multigrid Solution of a Lavrentiev-Regularized State-Constrained Parabolic Control Problem

نویسندگان

  • Alfio Borzì
  • Sergio González Andrade
  • S. González Andrade
چکیده

A mesh-independent, robust, and accurate multigrid scheme to solve a linear state-constrained parabolic optimal control problem is presented. We first consider a Lavrentiev regularization of the state-constrained optimization problem. Then, a multigrid scheme is designed for the numerical solution of the regularized optimality system. Central to this scheme is the construction of an iterative pointwise smoother which can be formulated as a local semismooth Newton iteration. Results of numerical experiments and theoretical twogrid local Fourier analysis estimates demonstrate that the proposed scheme is able to solve parabolic state-constrained optimality systems with textbook multigrid efficiency. AMS subject classifications: 35K10, 49K20, 49J20, 49M05, 65M55, 65C20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison of smoothers for state- constrained optimal control problems

O ptimal control problems governed by partial differential equations with state constraints are considered. The state constraints are treated by two types of regularization techniques, namely the Lavrentiev type and the Moreau-Yosida type regularization. For the realization of the numerical solution, a multigrid method is applied to the regularized problems. The main purpose of this research is...

متن کامل

An interior point method for a parabolic optimal control problem with regularized pointwise state constraints

In this talk, we extend our investigations on interior point methods for elliptic state-constrained optimal control problems in [4] and [2] to the parabolic case. The main difficulty of the numerical analysis of interior point methods for such problems is the lack of regularity of Lagrange multipliers associated with the state constraints. Therefore, it is helpful to improve the properties of t...

متن کامل

Hamburger Beiträge zur Angewandten Mathematik Variational Discretization of Lavrentiev - Regularized State Constrained Elliptic Control Problems

In the present work, we apply a variational discretization proposed by the first author in [14] to Lavrentiev-regularized state constrained elliptic control problems. We extend the results of [18] and prove weak convergence of the adjoint states and multipliers of the regularized problems to their counterparts of the original problem. Further, we prove error estimates for finite element discret...

متن کامل

On convergence of regularization methods for nonlinear parabolic optimal control problems with control and state constraints

Moreau-Yosida and Lavrentiev type regularization methods are considered for nonlinear optimal control problems governed by semilinear parabolic equations with bilateral pointwise control and state constraints. The convergence of optimal controls of the regularized problems is studied for regularization parameters tending to in nity or zero, respectively. In particular, the strong convergence of...

متن کامل

Control and Cybernetics on Convergence of Regularization Methods for Nonlinear Parabolic Optimal Control Problems with Control and State Constraints * By

Moreau-Yosida and Lavrentiev type regularization methods are considered for nonlinear optimal control problems governed by semilinear parabolic equations with bilateral pointwise control and state constraints. The convergence of optimal controls of the regularized problems is studied for regularization parameters tending to infinity or zero, respectively. In particular, the strong convergence o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011